
PHYSICAL REVIEW E, VOLUME 64, 016117
Convergence to equilibrium in a class of interacting particle systems evolving in discrete time
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We conjecture that for a wide class of interacting particle systems evolving in discrete time, namely,
conservative cellular automata with piecewise linear flow diagrams, relaxation to the limit set follows the same
power law at critical points. We further describe the structure of the limit sets of such systems as unions of
shifts of finite type. Relaxation to the equilibrium resembles ballistic annihilation, with ‘‘defects’’ propagating
in opposite directions annihilating upon collision.
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I. INTRODUCTION

Interacting particle systems evolving in discrete time ha
found many applications in recent years, especially in
field of road traffic modeling~see@1# and references therein!.
While the majority of traffic models based on interacti
particle systems are stochastic, some features of real tr
flow may be well described by purely deterministic mode
as reported in@2–4#.

An important characterization of a system of interacti
particles is its fundamental diagram, i.e., the graph of
particle flux through a fixed point, in the equilibrium state,
a function of particle density. In many cases, such diagra
exhibit a discontinuity of the first derivative, and are ve
often piecewise linear. In the simplest cases there is only
such discontinuity, and the fundamental diagram has
shape of an inverted ‘‘V.’’ Linear segments of the diagra
can be interpreted as distinct ‘‘phases.’’

The discontinuity of the first derivative, to be called
critical point below, displays many features similar to critic
phenomena known in statistical physics. The phenomeno
critical slowing down is especially apparent: when the d
sity of particles approaches the critical density, the conv
gence to equilibrium becomes slower. In what follows,
will present evidence strongly suggesting that at the crit
point the rate of convergence follows a power law with
universal exponent equal to2 1

2 .

II. INTERACTING PARTICLE SYSTEMS AND
CELLULAR AUTOMATA

The discrete version of a totally asymmetric exclusi
process is a simple yet often studied example of an inter
ing particle system@5–10#. The dynamics of this process ca
be described as follows. Particles reside on a o
dimensional lattice, with at most one particle per site.

*Electronic address: hfuks@brocku.ca
†Electronic address: boccara@uic.edu
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each timetPN, each particle checks if the site to the right
its current position is empty, and if it is, it jumps to this sit
The process is synchronous, meaning that all particles ju
at the same time.

Two alternative descriptions of this process are possi
We can label each particle with an integernPZ, such that
the closest particle to the right of particlen is labeledn11.
If s(n,t) denotes the position of particlen at time t, the
configuration of the particle system at timet is described by
the increasing bisequence$s(n,t)%n52`

` . The dynamics of
the totally asymmetric exclusion process can be now sta
as

s~n,t11!5s~n,t !1min$s~n11,t !2s~n,t !21,1%.
~2.1!

Another possible approach is to describe the proces
the language of cellular automata. If lattice sites are labe
with consecutive integersi PZ, definingx( i ,t)51 if the site
i is occupied by a particle andx( i ,t)50 if it is empty, the
configuration of the particle system at timet is in this case
described by the bisequence$x( i ,t)% i 52`

` . One can easily
show that the dynamics of the aforementioned proces
then given by

x~ i ,t11!5 f „x~ i 21,t !,x~ i ,t !,x~ i 11,t !…, ~2.2!

wheref is defined by

f ~0,0,0!50, f ~0,0,1!50, f ~0,1,0!50,

f ~0,1,1!51, f ~1,0,0!51, f ~1,0,1!51,

f ~1,1,0!50, f ~1,1,1!51. ~2.3!

The above definition can also be written in a more comp
form as

x~ i ,t11!5x~ i ,t !1min$x~ i 21,t !,12x~ i ,t !%

2min$x~ i ,t !,12x~ i 11,t !%. ~2.4!
©2001 The American Physical Society17-1
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HENRYK FUKŚ AND NINO BOCCARA PHYSICAL REVIEW E64 016117
The evolution rule~2.4! is often called cellular automato
rule 184, using the numbering scheme introduced by W
fram @11#.

Consider now the general cellular automaton

x~ i ,t11!5 f „x~ i 2r l ,t !,x~ i 2r l11,t !, . . . ,x~ i 1r r ,t !…,
~2.5!

where the functionf :$0,1% r l1r r11°$0,1% is the evolution
rule of the automaton, and the positive integersr l andr r are,
respectively, the left and right radius of the rule.f will also
be called ak-input rule wherek5r l1r r11 is the number of
arguments off. A rule f is said to be conservative if for an
periodic configuration of periodL @i.e., a configuration such
that x( i 1L,t)5x( i ) for every i PZ# we have

(
i 51

L

x~ i ,t11!5(
i 51

L

x~ i ,t !. ~2.6!

Every conservative cellular automaton rule can be view
as the evolution rule of a system of interacting particles, j
like rule 184 defined above, and a configuration of suc
system can be represented by an increasing bisequ
$s(n,t)%n52`

` , wheres(n,t) denotes the position of particl
n at timet. A formal proof of this statement and an algorith
for construction of an analog of Eq.~2.1! for a given conser-
vative rule f can be found in@12#. In @13# we presented a
survey of four-input and five-input conservative cellular a
tomata rules and their properties.

In order to describe the motion of the particles, we w
use a visual representation of rulef constructed as follows
List all relevant neighborhood configurations of a given p
ticle represented by 1. Then, for each neighborhood, indic
the displacement of this particle by drawing an arrow joini
the initial and final positions of the particle. For rule 184, th
would be

10
{

, 1
�

1, ~2.7!

where a circular arrow indicates that the particle does
move. The above notation is equivalent to saying that
particles that have empty sites immediately to their rig
jump one site to the right, while other particles do not mo

We will normally list only neighborhoods resulting in pa
ticle motion, assuming that by default, in all other cas
particles do not move. Rule 184, for example, will simply

represented by 10
{

.
All particles do not necessarily move in the same dir

tion. For example, there could be a process such that a
ticle will move one site to the right when the two neare
neighboring sites on its right are empty, while if its rig
neighboring site is occupied and its left neighboring site
empty, the particle moves one site to the left. In all oth
cases, the particle remains immobile. This rule can be v
ally represented by

10
{

0, 01
[

1. ~2.8!
01611
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The main quantities of interest in this paper are the av
age particle velocity and flux at timet. For a periodic con-
figuration of periodL, the average velocity is defined as

v~ t !5
1

N (
n51

N

@s~n,t21!2s~n,t !#, ~2.9!

whereN is the number of particles in a single period. Th
flux is defined asf(t)5rv(t), wherer5N/L is the density
of particles. In what follows, we assume that, att50, par-
ticles are randomly distributed on the lattice. WhenL→`,
this corresponds to the Bernoulli product measure onZ, with
lattice sites occupied by a particle with probabilityr, and
empty with probability 12r. If b5b1b2•••bk is a block of
finite lengthk, where, for alli P$1,2, . . . ,k% biP$0,1%, the
probability of occurrence of blockb in the configuration
$x( i ,t)% i 52`

` will be denoted byPt(b).

III. EXACT SOLUTION FOR DETERMINISTIC
TRAFFIC RULE

A natural extension of the totally asymmetric exclusi
process with discrete time has been studied in connec
with traffic models@14#. Each site is either occupied by
particle or empty. The velocity of each particle is an integ
between 0 andm. As before, ifs(n,t) denotes the position o
thenth car at timet, the position of the next car ahead at tim
t is s(n11,t). With this notation, the system evolves accor
ing to a synchronous rule given by

s~n,t11!5s~n,t !1v~n,t !, ~3.1!

where

v~n,t !5min$s~n11,t !2s~n,t !21,m% ~3.2!

is the velocity of the particlen at time t. Since g5s(n
11,t)2s(n,t)21 is the gap~number of empty sites! be-
tween particlesn and n11 at time t, one could say that a
each time step each particle advances byg sites to the right if
g<m, and bym sites if g.m. When m51, this model is
equivalent to elementary cellular automaton rule 184 d
cussed in the preceding section.

If we start with a random initial (t50) configuration with
particle densityr, it is possible to obtain an exact expressi
for the flux at a later timet.0, as shown in@15#:

f~ t !512r2(
j 51

t11
j

t11 S ~m11!~ t11!

t112 j D
3r t112 j~12r!m(t11)1 j . ~3.3!

In the limit t→`, we obtain the fluxf(`) at equilibrium,
which is the piecewise linear function ofr defined by

f~`!5H mr if r,1/~m11!

12r otherwise.
~3.4!

We can see that forr,1/(m11) the average velocity o
particles at equilibrium ism, i.e., all particles are moving to
7-2
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CONVERGENCE TO EQUILIBRIUM IN A CLASS OF . . . PHYSICAL REVIEW E 64 016117
the right with maximum speedm. The system is said to be i
a free-moving phase. Whenr.1/(m11), the speed of some
particles is less than the maximum speedm. The system is in
the so-calledjammed phase.

The transition from the free-moving phase to the jamm
phase occurs atr5rc51/(m11) called thecritical density.
At rc , it is possible to obtain an asymptotic approximati
of Eq. ~3.3! by replacing the sum by an integral and using t
de Moivre–Laplace limit theorem, as done in@15#. At rc this
procedure yields

f~`!2f~ t !5A m

2p~m11!t
~e2(m11)/2mt2e2(m11)t/2m!,

~3.5!

or, in other words, f(`)2f(t);t21/2. Here, by f (t)
;g(t) we mean that limt→` f (t)/g(t) exists and is different
from 0. Power law convergence to equilibrium at the critic
point for rule 184 has been established in@5# and @16#.

In the next section we will present some numerical res
suggesting that this behavior is universal for a wide class
interacting particle systems evolving in discrete time.

IV. NUMERICAL RESULTS FOR OTHER CELLULAR
AUTOMATON RULES

Among conservative five-input cellular automata~CA!
rules investigated in@13#, a majority exhibit piecewise linea
fundamental diagrams@i.e., graphs off(`) as a function of
r#. For the purpose of this article, we have selected six r
resentative examples of such rules among the 428 conse
tive five-input rules. These six rules are given in Table I, a
their fundamental diagrams are shown in Fig. 1. Rules
labeled using the standard numbering scheme introduce
@11#.

Points at which the slope of the fundamental diagr
changes are referred to as critical points. In Fig. 1, there
three rules with a single critical point and whose fundam
tal diagrams are similar to rule 184. The remaining th
rules have, respectively, two, three, and four critical poin

Inspection of Fig. 1 reveals that symmetries of CA ru
are reflected in the shapes of the fundamental diagrams.
symmetries play a role here: conjugation and spatial refl
tion. Conjugation exchanges the roles of 0s and 1s, that i
a rule describes a specific motion of particles~represented by
1s!, then its conjugate describes the same rule, but for

TABLE I. Examples of conservative rules with piecewise line
fundamental diagrams.

Rule no. Motion representation

3213933712
010

{
1 11

{
0 110

{

3482385552
010

{
1 011

{
0 110

{

3486567632
010

{
1 110

{

3163339916
110

{

3487613920
010

{
0 110

{

3167653058
0001

[
1110

{
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motion of holes~represented by 0s!. Spatial reflection re-
verses the direction of the particles’ motion. The conjuga
operator changes average velocityv into 2v and densityr
into 12r. Reflection changesv into 2v, leaving the density
unchanged.

Among the rules listed in Table I, rule 3 167 653 058
self-conjugate, meaning that the conjugacy operator lea
this rule unchanged. For this reason, its fundamental diag
is symmetric with respect to the point (1/2,0), i.e.,f(1
2r)52f(r). Rules 3 482 385 552 and 3 487 613 920 r
main unchanged after both conjugation and reflection op
tors are applied. Their fundamental diagrams, therefore,
symmetric with respect to the liner51/2, i.e.,f(12r)5
2f(r).

In order to illustrate that at a critical point the syste
converges to equilibrium ast21/2, we define the decay time
as

t5(
t50

`

uf~ t !2f~`!u. ~4.1!

If the decay is of power law type, the above sum diverges
the critical point.

For all rules in Table I, we have performed comput
simulations to estimatet. Results are shown in Fig. 2, wher
t is plotted as a function of density for each rule. The va
of t has been estimated by measuringf(t) for
t50,1, . . .,1000, and truncating the sum~4.1! at t51000.

Comparing Figs. 1 and 2 we clearly see thatt diverges at
critical points. In order to verify that indeeduf(`)2f(t)u
;t21/2 at critical points, we have plotted~for all critical
points! the numerical values ofuf(`)2f(t)u as a function
of t using logarithmic coordinates. Figure 3 shows an e

FIG. 1. Fundamental diagrams for rules from Table I.
7-3
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HENRYK FUKŚ AND NINO BOCCARA PHYSICAL REVIEW E64 016117
ample of such a graph, for the critical point of the first rule
Table I ~code number 3 213 933 712!. The (r,f) coordinates

of this critical point in the fundamental diagram are (2
3 , 2

3 ).
Assuming thatuf(`)2f(t)u;t2a, we have determined th
exponenta as the slope of the straight line that best fits t
logarithmic plot ofuf(`)2f(t)u. Table II shows our results
for all the critical points of all the six rules of Table I. Sym
metries of rules 3 167 653 058, 3 482 385 552, a
3 487 613 920 mentioned in the previous section are cle
reflected in critical point data.

All exponents shown in Table I are remarkably close to1
2 ,

suggesting thatt21/2 might be a universal law governing th

FIG. 2. Decay time as a function of density for rules fro
Table I.

FIG. 3. Logarithmic plot ofuf(`)2f(t)u as a function oft for
rule 3 213 933 712. Data points (1) represent computer simula
tions, while the dashed line represents the best fit~slope520.501
60.01).
01611
d
ly

rate of convergence to equilibrium at critical points of co
servative cellular automata with piecewise linear fundam
tal diagrams.

V. SHIFTS OF FINITE TYPE

In order to understand why the decay to equilibrium,
in other words, approach to the limit set, follows the sa
law for different rules, we now describe limit sets of conse
vative rules using the concept of ashift of finite type~SFT!.
In symbolic dynamics and coding theory@17#, a SFT is de-
fined as follows. LetB be a finite set of finite blocks~con-
secutive sites!, e.g., B5$00,11,101%. Consider a set of all
bi-infinite configurations in which blocks of the setB do not
appear~‘‘forbidden blocks’’!. Such a set, denoted byF(B),
is called a shift of finite type.

By analyzing frequencies of occurrences of finite bloc
in conservative CA, one can observe that limit sets of ma
conservative CA are unions of two or more SFT’s. Each
these SFT’s corresponds to a distinct ‘‘phase,’’ or a strai
line segment in the fundamental diagram. Critical points c
respond to a set of configurations common to two SFT
Forbidden block sets of each phase completely determine
fundamental diagram.

As an example, consider the deterministic traffic rule d
fined by the relations~3.1! and ~3.2!, assumingm52. We
mentioned that in the free-moving phase all particles mo
with maximum speedm52, which implies that 1’s are al-
ways separated by two or more 0’s. Hence, the blocks 11
101 cannot be found in a configuration belonging to the lim
set of the free-moving phase. In the jammed phase, on
other hand, blocks of zeros of length 3 or more cannot oc
The limit sets of these two phases are therefore, respectiv
F(11,101) andF(000). Note that these two sets are not co
pletely disjoint, but have three common elements, nam
. . . 100100100100 . . . , . . .001001001001 . . . , and
. . . 010010010010 . . .

Consider now the phaseA5F(11,101). It is clear that, for
any configuration inA, r<1/3, since two ones must alway

TABLE II. Values of the exponenta at critical points of rules
from Table I. Simulations performed using a lattice size equa
53105.

Rule no. Critical point (r,f) a

3213933712 (2/3,2/3) 0.501
3482385552 (1/2,1/2) 0.517
3486567632 (2/3,1/3) 0.507
3163339916 (1/2,0) 0.506

(2/3,1/3) 0.504
3487613920 (1/3,1/3) 0.502

(1/2,0) 0.539
(2/3,1/3) 0.504

3167653058 (1/4,21/4) 0.486
(1/3,0) 0.514
(2/3,0) 0.514

(3/4,1/4) 0.486
7-4
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CONVERGENCE TO EQUILIBRIUM IN A CLASS OF . . . PHYSICAL REVIEW E 64 016117
be separated by two or more zeros. We know that the fl
for the above rule is defined asf(t)52P(100)1P(101).
We also know thatP(11)5P(101)50. The consistency
condition gives P(100)1P(101)1P(110)1P(111)5r.
Hence,P(100)5r, and, in this phase,f(`)52r.

In phaseB5F(000), P(000)50, and one can show tha
f(`)512r2P(000). The proof can be found in@15# ~it
involves manipulations of the consistency conditions on!.
Hence,f512r. In B, the largest number of zeros separ
ing two ones is 2, hence the minimum value of the densitr
is 1

3 , sof(`)512r is valid for all r> 1
3 .

Note that we derived the fundamental diagram given
Eq. ~3.4! from the structure of the limit set only. This can b
done for all conservative CA with piecewise linear fund
mental diagrams. As mentioned earlier, different straight l
segments of the fundamental diagram correspond to diffe
SFT components of the limit set, while configurations co
mon to two SFT’s define critical points.

At the critical point, the limit set consists of a finite num
ber of configurations, yet there is an infinite number of init
configurations with a given density. Time evolution of th
system governed by a conservative rule can, therefore
viewed as a transition from an infinite configuration space
a finite configuration space. While details of this transiti
are different for different rules, it appears that the rate
convergence always follows the same law, as argued in
previous section.

In order to test this interpretation of the dynamics of co
servative CA, we have determined the spatial measure
tropy of configurations at timet. The spatial measure entrop
of a limit set configuration is defined as

s~k!52
1

k (
bP$0,1%k

P`~b!log2 P`~b!, ~5.1!

FIG. 4. Spatial measure entropy for block lengthk510 as a
function of density for rules of Table I.
01611
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where the sum runs over all blocks of lengthk, and P`(b)
denotes the probability of occurrence of blockb in the limit
set. If, at a givenr, the number of configurations in the lim
set is finite,s(k) should go to zero withk→`. Figure 4
showss(10) plotted as a function of the densityr for all the
six rules of Table I. Note that symmetries of rule
3 167 653 058, 3 482 385 552, and 3 487 613 920 are refle
in the spatial measure entropy plots of Fig. 4.

Comparing Figs. 1 and 4, one can easily see that, at c
cal points of fundamental diagrams,s(10) takes minimum
values, confirming our observations regarding the struct
of limit sets.

VI. ANNIHILATION OF DEFECTS

The dynamics of rule 184 can be described in terms
solitonlike localized structures propagating in a period
background@18#. More formally, it can be shown that rul
184 is equivalent to a ballistic annihilation process@19#. This
equivalence has been used in@9#, and investigated in detail in
@16#. The ballistic annihilation process involves two types
particle moving, on a line, at constant speed in opposite
rections. When two particles collide, they annihilate. Usi
the central limit theorem, Elskens and Frisch@19# demon-
strated that, if the initial distribution of particles is balance
then the fractionS(t) of surviving particles at timet behaves
as t21/2.

For rule 184, the ‘‘background’’ on which the defects a
moving is a periodic configuration of alternating zeros a
ones, . . . 01010101 . . . . If we call consecutive 1’s an
A-type defect and two consecutive 0’s aB-type defect, it is
easy to show@9# that, for each iteration of rule 184, defec
of type A move to the left, while defects of typeB move to
the right. When they collide, the reactionA1B
→background, i.e., annihilation, takes place.

A very similar construction can be made for the proce
defined by Eqs.~3.1! and ~3.2!. Here, the background con
sists of ones separated bym zeros. We can also define tw
types of defect, but with an additional subscript identifyin
their length. If two consecutive 1’s are separated by a clu
of zeros of lengthm1k (k.0), this is the defect of typeB,
denotedBk . Similarly, if two 1’s are separated by a clust

FIG. 5. Collision of defects in deterministic traffic rule define
by relations~3.1! and ~3.2! with m52. Black squares represen
lattice sites occupied by a particle. First,A1 collides with B3, re-
sulting inB2. Several iterations later,B2 collides withA2, and both
defects disappear.
7-5
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HENRYK FUKŚ AND NINO BOCCARA PHYSICAL REVIEW E64 016117
of zeros of lengthm2 l (m. l .0), such a cluster constitute
anA-type defect, denotedAl . A-type defects move to the lef
with speed 1 whileB-type defects move to the right wit
speedm. A collision between defectsAl andBk results in a
defectAl 2k if l .k, andBk2 l if k. l . If k5 l , the two defects
annihilate. Figure 5 shows an example of such collisions

FIG. 6. Spatiotemporal diagrams for rule 31 633 399 164 (1
{

)
with density of particles~a! r5

1
2 and ~b! r5

2
3 .
e

ev

-

01611
The dynamics of other conservative rules with piecew
linear fundamental diagrams can also be interpreted as in
actions of defects propagating in a periodic backgrou
However, the number of different types of ‘‘defect’’ an
‘‘background’’ is typically larger than in the simple case
described above. This can be seen in Fig. 6, which sh

spatiotemporal diagrams for rule 31 633 399 164 (110
{

) at r
5 1

2 andr5 2
3 . ‘‘Defects’’ propagating in opposite direction

and annihilating upon collision can be clearly identified
both diagrams. Atr5 1

2 all defects eventually disappear re
sulting in a periodic configuration. . . 01010101 . . . . Simi-
larly, at r5 2

3 annihilation of all defects results in a period
configuration . . . 110110110 . . . .Since these processes ca
be considered a generalization of a simple ballistic annih
tion, one can conjecture that their rate of convergence
equilibrium should be the same as for the ballistic annih
tion, in agreement with the results of computer simulatio
presented in Sec. IV.

VII. CONCLUSION

We have presented numerical evidence suggesting
for conservative cellular automata with piecewise linear fl
diagrams, relaxation to equilibrium at a critical point follow
a universal power law with exponent2 1

2 . The universality
of this critical behavior is related to the structure of limit se
of such rules, which can be described as unions of shifts
finite type. At critical points, the spatial measure entropy
the limit set has minimum value~zero when the block length
goes to infinity!, which means that the limit set consists of
finite number of configurations. Moreover, the dynamics
such rules can be viewed as interactions of ‘‘defects’’ pro
gating in opposite directions and annihilating upon collisio
just as in a simple ballistic annihilation process, for whi
the power lawt21/2 behavior has been established analy
cally.
lds
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