PHYSICAL REVIEW E, VOLUME 64, 016117
Convergence to equilibrium in a class of interacting particle systems evolving in discrete time
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We conjecture that for a wide class of interacting particle systems evolving in discrete time, namely,
conservative cellular automata with piecewise linear flow diagrams, relaxation to the limit set follows the same
power law at critical points. We further describe the structure of the limit sets of such systems as unions of
shifts of finite type. Relaxation to the equilibrium resembles ballistic annihilation, with “defects” propagating
in opposite directions annihilating upon collision.

DOI: 10.1103/PhysRevE.64.016117 PACS nuner05.70.Jk, 05.45-a, 05.40-a, 89.40+k

I. INTRODUCTION each timet e I\, each particle checks if the site to the right of
its current position is empty, and if it is, it jumps to this site.
Interacting particle systems evolving in discrete time haveThe process is synchronous, meaning that all particles jump
found many applications in recent years, especially in theat the same time.
field of road traffic modelingsee[1] and references thergin Two alternative descriptions of this process are possible.
While the majority of traffic models based on interactingWwe can label each particle with an integee Z, such that
particle systems are stochastic, some features of real traffige closest particle to the right of partiateis labeledn+1.
flow may be well described by purely deterministic models,if s(n,t) denotes the position of particle at time t, the
as reported if2—4]. configuration of the particle system at tirhés described by
An important characterization of a system of interactingthe increasing bisequends(n,t)};__... The dynamics of

particles is its fundamental diagram, i.e., the graph of thene totally asymmetric exclusion process can be now stated
particle flux through a fixed point, in the equilibrium state, aszg

a function of particle density. In many cases, such diagrams

exhibit a discontinuity of the first derivative, and are very s(n,t+1)=s(n,t)+min{s(n+1t)—s(n,t)—1,1}.

often piecewise linear. In the simplest cases there is only one (2.1

such discontinuity, and the fundamental diagram has the

shape of an inverted “V.” Linear segments of the diagram Another possible approach is to describe the process in

can be interpreted as distinct “phases.” the language of cellular automata. If lattice sites are labeled
The discontinuity of the first derivative, to be called a With consecutive integeris= Z, definingx(i,t) =1 if the site

critical point below, displays many features similar to critical i iS occupied by a particle anx(i,t)=0 if it is empty, the

phenomena known in statistical physics. The phenomenon gfonfiguration of the particle system at timhés in this case

critical slowing down is especially apparent: when the den-described by the bisequen¢g(i,t)};~_... One can easily

sity of particles approaches the critical density, the convershow that the dynamics of the aforementioned process is

gence to equilibrium becomes slower. In what follows, wethen given by

will present evidence strongly suggesting that at the critical

point the rate of convergence follows a power law with a x(i,t+1)=F(x(i—1t),x(i,t),x(i+11t)), (2.2

universal exponent equal to 5. heref is defined b
wheref is defined by

II. INTERACTING PARTICLE SYSTEMS AND f(0,0,00=0, f(0,0,=0, f(0,1,0=0,
CELLULAR AUTOMATA

The discrete version of a totally asymmetric exclusion f(0.1.D=1, #(100=1, f(1.01)=1,

process is a simple yet often studied example of an interact-
ing particle systeni5—10]. The dynamics of this process can

be described as follows. Particles reside on a one: - . .
. : ; : . ! The above definition can also be written in a more compact
dimensional lattice, with at most one particle per site. At

form as

f(1,1,0=0, f(1,1,1)=1. 2.3

X(i,t+1)=x(i,t)+min{x(i—1t),1—x(i,t
*Electronic address: hfuks@brocku.ca ( ) (.t) { ( ) ( )}
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The evolution rule(2.4) is often called cellular automaton The main quantities of interest in this paper are the aver-

rule 184, using the numbering scheme introduced by Wolage particle velocity and flux at time For a periodic con-

fram [11]. figuration of periodL, the average velocity is defined as
Consider now the general cellular automaton

1 N
(i t+1)=Fx(i—r, ) x(i—r,+18), ... X(i+1,,0), U(t):NnZl [s(n.t=1)=s(n,n)], (2.9

(2.5
) . whereN is the number of particles in a single period. The
where the functionf:{0,3" """ *~{0,1} is the evolution flux is defined ass(t) = pu(t), wherep=N/L is the density
rule of the automaton, and the positive integgrandr, are,  of particles. In what follows, we assume that,tat0, par-
respectively, the left and right radius of the rufewill also  ticles are randomly distributed on the lattice. Whens o,
be called &-input rule wherek=r,+r,+1 is the number of  thjs corresponds to the Bernoulli product measuréonith
arguments of. A rule f is said to be conservative if for any |attice sites occupied by a particle with probability and
period?c configurgtion of peri(_)d [i.e., a configuration such empty with probability - p. If b=b;b,- - - by is a block of
thatx(i+L,t)=x(i) for everyi e Z] we have finite lengthk, where, for alli€{1,2, ... k} b,e{0,1}, the
L L probability of occurrence of block in the configuration
S xit+1)=3 x(i.t). 2.6 {x(i,t)};= _.. will be denoted byP(b).
i=1 i=1
IIl. EXACT SOLUTION FOR DETERMINISTIC
Every conservative cellular automaton rule can be viewed TRAFFIC RULE
as the evolution rule of a system of interacting particles, just
like rule 184 defined above, and a configuration of such a A natural extension of the totally asymmetric exclusion
system can be represented by an increasing bisequenpeocess with discrete time has been studied in connection
{s(n,t)};—_.., wheres(n,t) denotes the position of particle with traffic models[14]. Each site is either occupied by a
n at timet. A formal proof of this statement and an algorithm particle or empty. The velocity of each particle is an integer
for construction of an analog of E@.1) for a given conser- between 0 andh. As before, ifs(n,t) denotes the position of
vative rulef can be found if12]. In [13] we presented a thenth car at time, the position of the next car ahead at time
survey of four-input and five-input conservative cellular au-t is s(n+ 1.t). With this notation, the system evolves accord-

tomata rules and their properties. ing to a synchronous rule given by
In order to describe the motion of the particles, we will
use a visual representation of rileonstructed as follows. s(n,t+1)=s(n,t)+ov(n,t), 3.1
List all relevant neighborhood configurations of a given par-
ticle represented by 1. Then, for each neighborhood, indicat@’here
the displacement of this particle by drawing an arrow joining v(n,t)=min{s(n+1t)—s(n,t)— 1,m} (3.2
the initial and final positions of the particle. For rule 184, this
would be is the velocity of the particlen at time t. Since g=s(n
+1t)—s(n,t)—1 is the gap(number of empty sitgsbe-
ﬂ), Cl)l, 2.7 tween particlesr andn+1 at timet, one could say that at

each time step each particle advancegBites to the right if

. - . <m, and bym sites if g>m. Whenm=1, this model is
where a circular arrow indicates that the particle does noE y g

move. The above notation is equivalent to saying that al
particles that have empty sites immediately to their right

JuT/SeO\?vﬁlsr:tc)errtr?a}Peligggrt{lWrr:lel? ﬁg@i[}ggg;c::uﬂgnnOitnmg\r/_e'particle densityp, it is possible to obtain an exact expression
y yneg 9N PA™ £ the flux at a later tim&>0, as shown if15]:

ticle motion, assuming that by default, in all other cases,
particles do not move. Rule 184, for example, will simply be t+1

quivalent to elementary cellular automaton rule 184 dis-
ussed in the preceding section.
If we start with a random initialt(=0) configuration with

(m+1)(t+1)
Y =1—p— [
represented by 10 ¢O=1-p =1t+1 t+1—]j
All particles do not necessarily move in the same direc- - .
tion. For example, there could be a process such that a par- X ptt (1= p)mtH DI, 3.3

ticle will move one site to the right when the two nearest . . _
neighboring sites on its right are empty, while if its right N the limit t—ce, we obtain the fluxp(c) at equilibrium,
neighboring site is occupied and its left neighboring site isVich is the piecewise linear function pfdefined by

empty, the particle moves one site to the left. In all other

; o . ) . if p<l(m+1
cases, the particle remains immobile. This rule can be visu- ¢(Oo):[mp " -/(m ) (3.9
ally represented by 1-p otherwise.
~ ~ We can see that fop<1l/(m+1) the average velocity of
100, O1L. (2.8)  particles at equilibrium isn, i.e., all particles are moving to
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TABLE I. Examples of conservative rules with piecewise linear %7 (e 035 I asaacota
fundamental diagrams. zz o"zz
) . 0.4 '..'.,...4-" ~,... 02
Rule no. Motion representation * o ® 015
02 0.1
3213933712 OT(IL TJD le) 0.1 0.05
3482385552 OTOJ. Ofi\]D 15-\0 0o 0.1 0.2 0.3 0.4 o';5 0.6 0.7 0809 1 0o 0.1 020304 o‘.]s 0.6 07 0.8 09 1
3486567632 oy
0101 110 02;: 3482885552 ¢, o.o3z 3487613920
3163339916 1D o4 oo :
03 0.2
3487613920 OTm 1% ¢ oz ® o
~ L o1t
0 0 01020304050607080.9 1 00 010203040506070809 1
P [4
the right with maximum speegh. The system is said to be in o o5
a free-moving phasa&Vhenp>1/(m+ 1), the speed of some 0. | 3486567632 0.2 | 3167653058
particles is less than the maximum speedlrhe system is in 025 !.—’ o
the so-calledammed phase , 02 & . 008 . :
The transition from the free-moving phase to the jammed ~ °5 005 [,
phase occurs at=p.=1/(m+ 1) called thecritical density ol ol
At p., it is possible to obtain an asymptotic approximation [ o2
Of Eq (33) by replaCIng the Sum by an Integral and USIng the 0 0.1 020304 0‘;5 06070809 1 0 01020304 0';5 06070809 1
de Moivre—Laplace limit theorem, as dong[Ikb]. At p,. this
procedure yields FIG. 1. Fundamental diagrams for rules from Table I.

m . . .
B _ —(m+1)2mt_ o~ (m+ 1)t/2m motion of holes(represented by Qs Spatial reflection re-
$(=)= (0= \ 5 i® e )

verses the direction of the particles’ motion. The conjugacy
(3.5 operator changes average veloaitynto —v and densityp

or, in other words, ¢(=)— ¢(t)~t~Y2 Here, by (1) into 1— p. Reflection changes into — v, leaving the density

[ i is di hanged.
~g(t) we mean that lim_..f(t)/g(t) exists and is different “N¢ _ _ |
from 0. Power law convergence to equilibrium at the critical Amor)g the rules I[sted in Table I, .rule 3167653058 is
point for rule 184 has been established %} and[16]. self-conjugate, meaning that the conjugacy operator leaves

In the next section we will present some numerical resultgh's rule unchanged. For this reason, its fundamental diagram

. ; P ; ; tric with respect to the point (1/2,0), i.e(1
suggesting that this behavior is universal for a wide class of® sy_mme
interacting particle systems evolving in discrete time. —p)=—¢(p). Rules 3482385552 and 3487613920 re-
main unchanged after both conjugation and reflection opera-

IV. NUMERICAL RESULTS FOR OTHER CELLULAR tors are applied. Their fundamental diagrams, therefore, are
AUTOMATON RULES symmetric with respect to the line=1/2, i.e.,¢(1—p)=
o —¢(p).
Among conservative five-input cellular automat@A) In order to illustrate that at a critical point the system

rules investigated ifil3], a majority exhibit piecewise linear converges to equilibrium as 2, we define the decay time
fundamental diagrams.e., graphs ofp(«) as a function of zg

pl. For the purpose of this article, we have selected six rep-

resentative examples of such rules among the 428 conserva- o0

tive five-input rules. These six rules are given in Table |, and = |b(t)— (). 4.1

their fundamental diagrams are shown in Fig. 1. Rules are t=0

labeled using the standard numbering scheme introduced in

[11]. If the decay is of power law type, the above sum diverges at
Points at which the slope of the fundamental diagranthe critical point.

changes are referred to as critical points. In Fig. 1, there are For all rules in Table I, we have performed computer

three rules with a single critical point and whose fundamensimulations to estimate. Results are shown in Fig. 2, where

tal diagrams are similar to rule 184. The remaining threer is plotted as a function of density for each rule. The value

rules have, respectively, two, three, and four critical points.0f 7 has been estimated by measuring(t) for
Inspection of Fig. 1 reveals that symmetries of CA rulest=0,1, . ..,1000, and truncating the suf.1) att=1000.

are reflected in the shapes of the fundamental diagrams. Two Comparing Figs. 1 and 2 we clearly see thativerges at

symmetries play a role here: conjugation and spatial reflecsritical points. In order to verify that indegd() — ¢(t)|

tion. Conjugation exchanges the roles of Os and 1s, that is, it~ Y2 at critical points, we have plotte¢for all critical

a rule describes a specific motion of partidle=presented by pointg the numerical values dfp (=) — ¢(t)| as a function

19, then its conjugate describes the same rule, but for thef t using logarithmic coordinates. Figure 3 shows an ex-

016117-3



HENRYK FUKS AND NINO BOCCARA PHYSICAL REVIEW E64 016117

3 P — 3“5‘ 153335915 TABLE II. Vqlues Qf the exponend at. critical pointg of rules
o o from Table I. Simulations performed using a lattice size equal to
5 25 5X 10°.
T 4 T 2
; " Rule no. Critical point g, ¢) a
1 0.5
0 0 3213933712 (2/3,2/3) 0.501
02 03 04 05 06 07 08 09 1 0 0.2 0.4 0.6 0.8 1
d P 3482385552 (1/2,1/2) 0.517
12 9 3486567632 (2/3,1/3) 0.507
3482385552 8 3487613920
10 7 3163339916 (1/2,0) 0.506
8 6 (2/3,1/3) 0.504
5
s Toa 3487613920 (1/3,1/3) 0.502
: Z (1/2,0) 0.539
. ! (213,1/3) 0.504
02 03 04 05 0;36 07 08 09 1 0 0.2 0.4 , 0.6 0.8 1 3167653058 (1/% 1/4) 0486
, s (1/3,0) 0.514
s 3486567632 4 3167653058 (2/3,0) 0514
5 e (3/4,1/4) 0.486
4 25
T 3 T 2
2 15
o o rate of convergence to equilibrium at critical points of con-
2 05 on o 06 07 08 oo 1 0 0z o1 os o8 servative cellular automata with piecewise linear fundamen-
e e tal diagrams.
FIG. 2. Decay time as a function of density for rules from
Table 1.

V. SHIFTS OF FINITE TYPE

ample of such a graph, for the critical point of the first rule in I order to understand why the decay to equilibrium, or,
Table I(code number 3213933 71L2The (o, ¢) coordinates 1N other words, approach to the limit set, follows the same

L o . law for different rules, we now describe limit sets of conser-
of this critical point in the fundamental diagram arg %).

Assuming that ¢ (<) — b(t)| ~t—%, we have determined the vative rules using the concept ofsaift of finite type(SFT).

. ) X In symbolic dynamics and coding thedry7], a SFT is de-
exponenta as the slope of the straight line that best fits thefined as follows. LeB be a finite set of finite blocké&con-

logarithmic plot of| (=) — ¢(t)|. Table Il shows our results - sqiive sites e.g., B={00,11,10}. Consider a set of all

for all the critical points of all the six rules of Table I. Sym- Ogi-infinite configurations in which blocks of the sBtdo not

metries of rules 3167653058, 3482385552, an " . b
' ' f locks”). h t ted By(B
3487613920 mentioned in the previous section are clearlyppear( orbidden blocks”). Such a set, denoted ),

fl d in critical ooint d s called a shift of finite type.
reflected in critica pomt. ata. By analyzing frequencies of occurrences of finite blocks
All exponents shown in Table | are remarkably closé to

; Y . : in conservative CA, one can observe that limit sets of many
suggesting that™* might be a universal law governing the ,servative CA are unions of two or more SFT’s. Each of

these SFT’s corresponds to a distinct “phase,” or a straight
line segment in the fundamental diagram. Critical points cor-
respond to a set of configurations common to two SFT'’s.
Forbidden block sets of each phase completely determine the
fundamental diagram.
. As an example, consider the deterministic traffic rule de-
fined by the relation$3.1) and (3.2), assumingm=2. We
Tt mentioned that in the free-moving phase all particles move
- T, with maximum speedn=2, which implies that 1's are al-
001 L M ways separated by two or more 0's. Hence, the blocks 11 and
101 cannot be found in a configuration belonging to the limit
set of the free-moving phase. In the jammed phase, on the
other hand, blocks of zeros of length 3 or more cannot occur.
The limit sets of these two phases are therefore, respectively,
0001 0 100 700 F(11,101) and=(000). Note that these two sets are not com-
t pletely disjoint, but have three common elements, namely,
FIG. 3. Logarithmic plot of ¢() — ¢(t)| as a function ot for ... 10010010010. . ., ...00100100100. ..,  and
rule 3213933 712. Data points+() represent computer simula- - .- 0100100100Q. ..
tions, while the dashed line represents the begskipe= —0.501 Consider now the phage=F(11,101). Itis clear that, for
+0.01). any configuration imA, p<1/3, since two ones must always

0.1 |

—

1b(t)-0{=2)!
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0.7 0.7
3213933712, 31633;
0.6 06
05 0.5
0.4 0.4
s(10) 03 $(10) 03
0.2 0.2
0.1 0.1
0 o qE,
0 010203040506 070809 1 0 010203040506070809 1 =
p o =
06 0.55
348238555: 0.5 |3487618020
05 0.45 A\
0.4 04
0.35
s(10) 0.3 $(10) 0.3
02 oz FIG. 5. Collision of defects in deterministic traffic rule defined
01 010 by relations(3.1) and (3.2 with m=2. Black squares represent
0 0.05 lattice sites occupied by a particle. First; collides with B3, re-
0 010203040506 070809 1 0 010203040506070809 1 . . . . N .
o P sulting inB,. Several iterations lateB, collides withA,, and both
07 07 defects disappear.
34865676 3167653058
0.6 0.6
08 0% where the sum runs over all blocks of lend¢hand P..(b)
0.4 0.4 . . . .
s(10) o s10) denotes the probability of occurrence of bldzkn the limit
02 02 set. If, at a giverp, the number of configurations in the limit
o1 o1 set is finite,s(k) should go to zero wittk—<. Figure 4
0 4] . .
0 010202 04 0506 07 08 09 1 0 010203040506 07 0908 T showss(10) plotted as a function of the densjiyfor all the

six rules of Table I. Note that symmetries of rules
FIG. 4. Spatial measure entropy for block lendti10 as a 3167653058, 3482385552, and 3487 613920 are reflected
function of density for rules of Table I. in the spatial measure entropy plots of Fig. 4.
Comparing Figs. 1 and 4, one can easily see that, at criti-
points of fundamental diagrams(10) takes minimum
values, confirming our observations regarding the structure
of limit sets.

be separated by two or more zeros. We know that the ﬂo%al
for the above rule is defined ag(t)=2P(100)+ P(101).
We also know thatP(11)=P(101)=0. The consistency
condition gives P(100)+P(101)+P(110)+P(111)=0p.
Hence,P(100)=p, and, in this phasep(«»)=2p.

In phaseB=F(000), P(000)=0, and one can show that V1. ANNIHILATION OF DEFECTS
¢()=1—p—P(000). The proof can be found iflL5] (it
involves manipulations of the consistency conditions pnly ~ The dynamics of rule 184 can be described in terms of
Hence,¢p=1—p. In B, the largest number of zeros separat-solitonlike localized structures propagating in a periodic
ing two ones is 2, hence the minimum value of the dengsity background18]. More formally, it can be shown that rule
is 3, S0 () =1—p is valid for all p=13. 184 is equivalent to a ballistic annihilation proc¢$8]. This

Note that we derived the fundamental diagram given byequivalence has been used®, and investigated in detail in
Eq. (3.4) from the structure of the limit set only. This can be [16]. The ballistic annihilation process involves two types of
done for all conservative CA with piecewise linear funda-particle moving, on a line, at constant speed in opposite di-
mental diagrams. As mentioned earlier, different straight linerections. When two patrticles collide, they annihilate. Using
segments of the fundamental diagram correspond to differenhe central limit theorem, Elskens and Frigcd9] demon-
SFT components of the limit set, while configurations com-strated that, if the initial distribution of particles is balanced,
mon to two SFT’s define critical points. then the fractior8(t) of surviving particles at timé behaves

At the critical point, the limit set consists of a finite num- ast=/2
ber of configurations, yet there is an infinite number of initial ~ For rule 184, the “background” on which the defects are
configurations with a given density. Time evolution of the moving is a periodic configuration of alternating zeros and
system governed by a conservative rule can, therefore, benes, ...010101Q.... If we call consecutive 1's an
viewed as a transition from an infinite configuration space toA-type defect and two consecutive 0’sBatype defect, it is
a finite configuration space. While details of this transitioneasy to show9] that, for each iteration of rule 184, defects
are different for different rules, it appears that the rate ofof type A move to the left, while defects of typ® move to
convergence always follows the same law, as argued in thghe right. When they collide, the reactior’A+B
previous section. —background, i.e., annihilation, takes place.

In order to test this interpretation of the dynamics of con- A very similar construction can be made for the process
servative CA, we have determined the spatial measure emtefined by Eqs(3.1) and (3.2). Here, the background con-
tropy of configurations at time The spatial measure entropy sists of ones separated hyzeros. We can also define two

of a limit set configuration is defined as types of defect, but with an additional subscript identifying
1 their length. If two consecutive 1's are separated by a cluster
s(k)y=—— >, P.(b)log, P..(b), (5.1  of zeros of lengtm+k (k>0), this is the defect of typB,
k be{0,1% denotedB,.. Similarly, if two 1's are separated by a cluster
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i The dynamics of other conservative rules with piecewise
linear fundamental diagrams can also be interpreted as inter-
actions of defects propagating in a periodic background.
However, the number of different types of “defect” and
“background” is typically larger than in the simple cases
described above. This can be seen in Fig. 6, which shows

spatiotemporal diagrams for rule 31633399 16?01&0;)

=1 andp=3. “Defects” propagating in opposite directions
and ann|h|lat|ng upon collision can be clearly identified in
both diagrams. Ap=3 all defects eventually disappear re-
sulting in a periodic configuration..010101Q.. .. Simi-
(a) larly, at p=2 annihilation of all defects results in a periodic
configuration. .. 11011010. ... Since these processes can
T o . be considered a generalization of a simple ballistic annihila-
¥ tion, one can conjecture that their rate of convergence to
equilibrium should be the same as for the ballistic annihila-
tion, in agreement with the results of computer simulations
presented in Sec. IV.

VIl. CONCLUSION

We have presented numerical evidence suggesting that,
for conservative cellular automata with piecewise linear flow
diagrams, relaxation to equilibrium at a critical point follows
a universal power law with exponert3. The universality
(b) of this critical behavior is related to the structure of limit sets

of such rules, which can be described as unions of shifts of

FIG. 6. Spatiotemporal dlagfams for rU|e 31633399 164 J110 finite type. At critical points, the spatial measure entropy of
with density of particlega) p=3 and(b) p= the limit set has minimum valu@ero when the block length

goes to infinity, which means that the limit set consists of a
of zeros of lengttim—1 (m>1>0), such a cluster constitutes finite number of configurations. Moreover, the dynamics of
anA-type defect, denoted, . A-type defects move to the left such rules can be viewed as interactions of “defects” propa-
with speed 1 whileB-type defects move to the right with gating in opposite directions and annihilating upon collision,
speedm. A collision between defectd, andB, results in a  just as in a simple ballistic annihilation process, for which
defectA,_, if | >k, andB,_, if k>1. If k=1, the two defects the power lawt ¥ behavior has been established analyti-
annihilate. Figure 5 shows an example of such collisions. cally.
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